
GPDs on and off the Lattice

Andreas Schäfer (Regensburg) for RQCD & D. Ivanov, ...

Exclusive quarkonium production at NLO & resummation
Momentum smearing in LQCD
Λ polarization in heavy ion collisions
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Exclusive vector meson production

Exclusive quarkonium photoproduction is a key process to
determine the gluon GPDs Hg and Eg at EIC, see e.g.
Koempel, Kroll, Metz and Zhou, arXiv:1112.1334.
We calculated this process at NLO and found huge scale
uncertainties. Ivanov, AS, Szymanowski and Krasnikov,
hep-ph/0401131
Now we, Ivanov and (Braun, Manashov, AS) and (Pire
Szymanowski, Wagner) try to improve using resummation
Crucial: The Catani and Hautmann approach for DIS,
hep-ph/9405388, can be directly generalized to exclusive
reactions
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Already now there exists very good data from ultra peripheral
collisions
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Combined Collinear QCD and NRQCD factorizations:
twist ∼ 1/Mn and velocity ∼

(v
c

)m expansions:

M ∼
( 〈O1〉V

m3

)1/2 1∫
−1

dx
[

Tg(x , ξ) F g(x , ξ, t) + Tq(x , ξ)F q,S(x , ξ, t)
]

F q,S(x , ξ, t) =
∑

q=u,d,s

F q(x , ξ, t)
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F g(q)(x , ξ, t ;µ2
F ) – the gluon (quark) GPDs, m is a pole mass of

heavy quark,

ξ = M2/(2W 2 −M2) is the skewedness parameter.

In NRQCD all information about the quarkonium structure is
encoded in the NRQCD matrix element 〈O1〉V which enters the
leptonic decay rate

Γ[V → l+l−] =
2e2

qπα
2

3
〈O1〉V

m2

(
1− 8αS

3π

)2

.
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The hard scattering kernels:

Tg(x , ξ) =
ξ

(x − ξ + iε)(x + ξ − iε)
Ag

(
x − ξ + iε

2ξ

)
Tq(x , ξ) = Aq

(
x − ξ + iε

2ξ

)
.

LO
A(0)

g (y) = αS A(0)
q (y) = 0

NLO
D. Ivanov, AS , L. Szymanowski and G. Krasnikov - (2004);
recently S.Jones, A. Martin, M. Ryskin and T. Teubner - (2016)

Tq(x , ξ) =
α2

S(µR)CF

2π
fq

(
x − ξ + iε

2ξ

)
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fq(y) = ln
(4m2

µ2
F

)
(1 + 2y)

(
ln(−y)

1 + y
− ln(1 + y)

y

)
− π2 13(1 + 2y)

48y(1 + y)
+

2 ln 2
1 + 2y

+
ln(−y) + ln(1 + y)

1 + 2y
+ (1 + 2y)

(
ln2(−y)

1 + y
− ln2(1 + y)

y

)

+
3− 4y + 16y(1 + y)

4y(1 + y)
Li2(1 + 2y)

− 7 + 4y + 16y(1 + y)

4y(1 + y)
Li2(−1− 2y)

The expression for Tg is much longer
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The scale dependence for both LO and NLO is huge, making
this reaction channel basically useless for GPD determinations.
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Photoproduction cross section as a function of W =
√

sγp for
µ2

F = M2
J/ψ × {0.5,1,2} (bottom to top) in LO (larger) and NLO

(smaller). Thick lines for LO and NLO for µ2
F = 1/4M2

J/ψ. Note
logarithmic scale
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So you have to work still harder: High-energy resummation

10 20 50 100 200 500 1000 W

1

10

100

1000

Σ@nbD

10 20 50 100 200 500 1000 W

1

10

100

1000

Σ@nbD

NLO(left panel) and resummed (right panel) photoproduction
cross section (only gluonic GPDs included in both cases) as
function of W =

√
sγp for µ2

F = M2
J/ψ × {0.5,1,2} (pink, blue

and yellow lines respectively) Ivanov, Pire, Szymanowski,
Wagner preliminary !!!
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What is done ?

Why NLO corrections are large at small x?
large contribution comes from ξ � x � 1 (Q = M)

γ∗ γ∗

ImAg ∼ Hg(ξ, ξ) +
Ncαs

π

[
log

Q2

µ2
F
− log 4

] 1∫
ξ

dx
x

Hg(x , ξ)

Hg(x , ξ) ∼ xg(x) ∼ const thus
∫

dx/xHg(x , ξ) ∼ log(1/ξ)Hg(ξ, ξ)

large NLO correction – first BFKL log of energy

use BFKL as a tool to improve collinear approach
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The BFKL trick (LLA); Nth moment:

1
x

ᾱn
s

(n − 1)!
logn−1 x

ξ
→
(
ᾱs

N

)n

High energy resummation is obtained by taking the limit N → 0

The anomalous dimension after expanding in ᾱ/N is known

γN = γgg,N =
ᾱs

N
+ 2ζ(3)

(
ᾱs

N

)4

+ 2ζ(5)

(
ᾱs

N

)6

+ . . .

Using Catani’s and Hautmann’s MS result

Cg
N ∼ hV (γN)RN

(
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F

)γN
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8ζ(3)
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Choosing the process dependent

hJ/ψ
V (k2

⊥) =
Q2

Q2 + 4k2
⊥
⇒ hJ/ψ

V (γN) = 4−γN Γ(1 + γN) Γ(1− γN)

Result for µF = MJ/ψ

Cg
J/ψ,N = αs

{
1− log(4)

(
ᾱs

N

)
+

(
π2

6
+ 2 log2(2)

)(
ᾱs

N

)2

+ . . .

}
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Momentum smearing in LQCD

What is needed to make “Ji’s method” to work quantitatively?
We use the variant V. Braun and D. Müller, EPJ C 55 (2008)
349, arXiv:0709.1348 where, correlators non-local in space are
used to analyze, e.g., the pion distribution amplitude

〈0|T{jµ(x)jν(−x)|π0(p)〉 = −5i
p

fπεµνρσ
xρpσ

8π2x4 T (p · x , x2)

T (p · x , x2) =

∫ 1

0
du ei(2u−1)p·x H(u, (µx)2, αs(µ)) Φπ(u, µ)

+ higher twist

It is completely sufficient to study x0 = 0, ~x 6= 0 IF |~x | is small
enough for pQCD to apply.
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Three model DAs for the pion
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thick lines: NNLO plus twist-four predictions; thin lines LO
predictions; µ2 = −1/(~x)2 = 4GeV2 (upper) and 1GeV2 (lower).
The colors correspond to the different DA models.
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For small ~x one needs very large momenta

momentum smearing: B. Musch, G. Bali, B. Lang, AS,
1602.05525
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Smearing density profile in the x1-x2 plane for ~k = (1,1,0). Top
left: free field case. Top right: APE smeared gauge links.
Bottom left: original gauge links. Bottom right: APE smeared
links with an additional boost factor γ = 5.3.
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• dispersion relation
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• Lorentz contraction does not help
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renormalized results for T from the pion DA without (left) with
(right) higher twist corrections (Nf = 2; 800 configs→ 2000
configs; mπ = 290 MeV, a = 0.071 fm; 323 × 64; plus higher
radiative corrections)
Works as advocated, but you need still larger momenta, i.e.
finer lattices (CLS open boundary conditions)
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On the look-out for links between hadron structure and heavy
ion physics: A very speculative idea

Λ and Λ̄ produced at mid-rapidity in Heavy Ion Collisions are
preferentially polarized along ~Jsys

STAR; 2016; 32th Winter Workshop on Nuclear Dynamics
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How can this happen if the transverse correlation length is
1/Qs ∼ 0.2 fm ?

Some theoreticians see no problem, e.g. Pang, Petersen, Wang
Wang, 1605.04024 “vortical fluid”;
relation to Chiral Vortical Effect

My question: Can there be a significant spin, rapidity correlation
in the initial state due to Boer-Mulders correlation?

More general question: Is a fast moving nucleon a coherent
quantum state?
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Transverse quark density, expressed in terms of GPDs

1
(2π)2

∫
d2∆⊥eib⊥·∆⊥

∫
dz−

2π
eixP̄+z−〈P2| q̄(−1

2
z) γ+[1 + ~s · ~γ)γ5]q(

1
2

z) |P1〉
∣∣∣z⊥=0

z+=0

=
1
2

[
F + siF i

T

]
=

1
2

[
H − Siεijbj 1

m
E ′ − siεijbj 1

m

(
E ′T + 2H̃ ′T

)
+ siSi

(
HT −

1
4m2 ∆bH̃T

)
+ si (2bibj − b2δij )Sj 1

m2 H̃ ′′T

]

has a simple interpretation:
Siεijbj coupling of proton spin to quark angular momentum
siεijbj coupling of quark spin to quark angular momentum
siSi coupling of quark spin and proton spin
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1st x moment of up quarks in a proton, RQCD unpublished
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1st x moment of down quarks in a proton, RQCD unpublished
M. Burkardt and B. Hannafious, “Are all Boer-Mulders functions
alike?”, arXiv:0705.1573 The longitudinal momentum is
increased for y > 0 and decreased for y < 0
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J sys

red: proton moving towards the reader; blue: nucleon moving
away; quarks polarized to the right have smaller longitudinal
momentum and, therefore, are more likely to stay at
mid-rapidity.

Needed: Tensor GPDs of nuclei
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Conclusions

High energy (BFKL-) resummation works efficiently for
exclusive heavy quark production (as well as DVCS and
TCS). Still the theoretical uncertainties are sizable
Ji’s method works, but there is no free lunch: One needs
perturbatively small spacial separations and very large
momentum. Momentum smearing is efficient to reach this.
Everything looks as advertised but one needs very fine
lattices and huge statistics to beat the usual moment
method.
A very speculative idea: How tensor GPDs might be
related to Λ polarization in HICs
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